Artificial intelligence usually encompasses the growing body of work in technology on the cutting edge that aims to train the technology to accurately imitate or — in some cases — exceed the capabilities of humans.
Today, AI is often applied to several areas of research:
Machine vision: Which helps computers understand the position of objects in the world through lights and cameras.
Machine learning (ML): The general problem of teaching computers about the world with a training set of examples.
Natural language processing (NLP): Making sense of knowledge encoded in human languages.
Robotics: Designing machines that can work with some degree of independence to assist with tasks, especially work that humans can’t do because it may be repetitive, strenuous or dangerous.
Leading companies have invested heavily in AI and developed a wide range of products aimed at both developers and end users. Their product lines are increasingly diverse as the companies experiment with different tiers of solutions to a wide range of applied problems. Some are more polished and aimed at the casual computer user. Others are aimed at other programmers who will integrate the AI into their own software to enhance it. The largest companies all offer dozens of products now and it’s hard to summarize their increasingly varied options.
IBM has long been one of the leaders in AI research. Its AI-based competitor in the TV game Jeopardy, Watson, helped ignite the recent interest in AI when it beat humans in 2011 demonstrating how adept the software could be at handling more general questions posed in human language. Since then, IBM has built a broad collection of applied AI algorithms under the Watson brand name that can automate decisions in a wide range of business applications like risk management, compliance, business workflow and devops. These solutions rely upon a mixture of natural language processing and machine learning to create models that can either make production decisions or watch for anomalies. In one case study of its applications, for instance, the IBM Safer Payments product prevented $115 million worth of credit card fraud.
Another example, Microsoft’s AI platform offers a wide range of algorithms, both as products and services available through Azure. The company also targets machine learning and computer vision applications and like to highlight how their tools search for secrets inside extremely large data sets. Its Megatron-Turing Natural Language Generation model (MT-NLG), for instance, has 530 billion parameters to model the nuances of human communication. Microsoft is also working on helping businesses processes shift from being automated to becoming autonomous by adding more intelligence to handle decision-making. Its autonomous packages are, for instance, being applied to both the narrow problems of keeping assembly lines running smoothly and the wider challenges of navigating drones.
New AI companies tend to be focused on one particular task, where applied algorithms and a determined focus will produce something transformative. For instance, a wide-reaching current challenge is producing self-driving cars. Startups like Waymo, Pony AI, Cruise Automation and Argo are four major startups with significant funding who are building the software and sensor systems that will allow cars to navigate themselves through the streets. The algorithms involve a mixture of machine learning, computer vision, and planning.
Many startups are applying similar algorithms to more limited or predictable domains like warehouse or industrial plants. Companies like Nuro, Bright Machines and Fetch are just some of the many that want to automate warehouses and industrial spaces. Fetch also wants to apply machine vision and planning algorithms to take on repetitive tasks. A substantial number of startups are also targeting jobs that are either dangerous to humans or impossible for them to do. Against this backdrop, Hydromea is building autonomous underwater drones that can track submerged assets like oil rigs or mining tools. Another company, Solinus, makes robots for inspecting narrow pipes.
Many startups are also working in digital domains, in part because the area is a natural habitat for algorithms, since the data is already in digital form. There are dozens of companies, for instance, working to simplify and automate routine tasks that are part of the digital workflow for companies. This area, sometimes called robotic process automation (RPA), rarely involves physical robots because it works with digital paperwork or chit. However, it is a popular way for companies to integrate basic AI routines into their software stack. Good RPA platforms, for example, often use optical character recognition and natural language processing to make sense of uploaded forms in order to simplify the office workload.
© Mobitech Solution. All Rights Reserved. Designed by Mobitech Solution